The active oxygen complexes formed upon reaction of ferric hemoproteins of ferriporphyrins with single oxygen donors such as iodosylarenes have been described as $\mathrm{Fe}=0,{ }^{\mathrm{v}}=15,20, \mathrm{Fe}^{\mathrm{IV}}=0$ (porphyrin π cation radical), ${ }^{3,4,15}$ or $\mathrm{Fe}^{\mathrm{IV}} \mathrm{R} \cdot$ (R being an amino acid residue $)^{3 b, 18}$ complexes. In some cases, the occurrence of structure B which involves the iron in a peculiar coordination environment but in its usual ferric state should also be considered. ${ }^{21}$
(19) Involving the electrophilic reaction of the oxygen atom of CAT I driven by the regeneration of the $\mathrm{Fe}-\mathrm{N}$ bond, which can be schematically

viewed as
(20) Groves, J. T.; McClusky, G. A.; White, R. E.; Coon, M. J. Biochem. Biophys. Res. Commun. 1978, 81, 154
(21) The formation of a species exhibiting a CAT-I-like visible spectrum has been recently reported upon reaction of iron(III) octaethylporphyrin chloride with 2,6-dimethyliodosylbenzene: Chang, C. K.; Kuo, M. S. J. Am. Chem. Soc. 1979, 101, 3413.
(22) It has been previously suggested that metal (M) insertion into N-oxide porphyrins could lead to complexes with a M-O-N moiety: Bonnet, R.; Ridge, R. J.; Appelman, E. H. J. Chem. Soc., Chem. Commun. 1978, 310. Possible involvement of $\mathrm{M}-\mathrm{O}-\mathrm{N}$ structures has been proposed by: Callot, H . J, and Schaeffer, E. Nouveau J. Chim. 1980, 4, 307.

Site Symmetry and the Framework Group

R. L. Flurry, Jr.

Department of Chemistry, University of New Orleans
New Orleans, Louisiana 70122
Received August 8, 1980
In a recent article in this journal, Pople proposed the useful concept of a framework group ${ }^{1}$ in order to specify molecular symmetry more completely than is accomplished by using only point group notation. This formalism appears especially useful for machine computations of structures from the symmetry notation and vice versa. The purpose of this communication is to recast the formalism in terms of site symmetry groups. ${ }^{2}$ There are several advantages to this: (a) The subsets of atoms can be easily shown to be mutually exclusive, since the site symmetry and interchange groups share no common generators. ${ }^{2 b}$ (b) Pople's k values are simply the order of the interchange groups, which, in turn, are the orders of the full point groups divided by those of the site symmetry groups. (c) The site symmetry terminology is already in the literature, thus avoiding the introduction of the new terminology (the O, X, etc., labels). (d) Most importantly, computational advantages are obtained in the construction of linear combinations of basis functions. These are obtained by the successive application of the site symmetry and interchange group projection operators. ${ }^{2 b}$

The site symmetry group, G_{s}, of a site in a molecule is the group defined by the symmetry elements which pass through that site. The interchange group, G_{I}, is the group which interchanges the equivalent sites and is defined by the generators of the full group which are not included in the site symmetry. ${ }^{2 b}$ Table I lists the site symmetry and interchange groups for some selected systems. Both the site symmetry and the interchange groups for a position can be as high as the full point symmetry or as low as C_{1}. The generators of the point group appear in one or the other of these, but they cannot appear in both. Thus, subsets of atoms having

[^0]Table I. Site Symmetry and Interchange Groups for Some Selected Systems ${ }^{3}$

point group	molecule a	ligand	G_{s}	G_{I}
$C_{3 v}$	AX_{3}	X	C_{s}	C_{3}
	$\mathrm{AX}_{3} \mathrm{Y}$	Y	$C_{3 v}$	C_{1}
$C_{4 v}$	AX_{4}	X	C_{s}	C_{4}
$C_{n v}$	$\mathrm{AXX}_{4} \mathrm{YZ}$	$\mathrm{Y}(\mathrm{Z})$	$C_{4 v}$	C_{1}
$D_{2 h}$	$\mathrm{AX}_{2} \mathrm{Y}_{2} \mathrm{Z}_{2}$	$\mathrm{X}(\mathrm{Y}, \mathrm{Z})$	C_{s}	C_{n}
$D_{2 d}$	$\mathrm{AX}_{2} \mathrm{Y}_{2}$	$\mathrm{X}(\mathrm{Y})$	C_{s}	C_{2}
$D_{3 h}$	AX_{3}	X	$C_{2 v}$	C_{3}
	AX_{2}	Y	$C_{3 v}$	C_{2}
$D_{3 d}$	AX_{6}	X	C_{s}	S_{6}
$D_{4 h}$	AXX_{4}	X	$C_{2 v}$	C_{4}
	AX_{4}	Y	$C_{4 v}$	C_{2}
$D_{6 h}$	X_{6}	X	$C_{2 v}$	C_{6}
T_{d}	AX_{4}	X	$C_{3 v}$	S_{4}
O_{h}	AX_{6}	X	$C_{4 v}$	S_{4}
$D_{\infty h}$	X_{2}	X	$C_{\infty v}$	C_{i}

${ }^{a}$ The A atom in each case has the full point symmetry as its site symmetry and C_{1} as its interchange symmetry.

Table II. Site Symmetries and k Values

group	site symmetries	k values
C_{1}	C_{1}	1
C_{s}	C_{s}, C_{1}	1,2
C_{i}	C_{i}, C_{1}	1,2
C_{n}	C_{n}, C_{1}	1, n
$C_{2 v}$	$C_{2 U}, C_{s}, C_{s}^{\prime}, C_{1}$	1,2,2,4
$C_{n v}$ (n odd)	$C_{n u}, C_{s}, C_{1}$,	1, $n, 2 n$
$C_{n v}$ (n even)	$C_{n v}, C_{s}, C_{s}^{\prime}, C_{1}$	1, $n, n, 2 n$
$C_{n h}$	$C_{n h}, C_{n}, C_{s}, C_{1}$	1,2, $n, 2 n$
$S_{2 n}$	$S_{2 n}, C_{n}, C_{1}$	1,2, $2 n$
$D_{n}(n$ odd $)$	$D_{n}, C_{n}, C_{2}, C_{1}$	1,2, $n, 2 n$
$D_{n}(n$ even $)$	$D_{n}, C_{n}, C_{2}, C_{2}{ }^{\prime}, C_{1}$	1,2, $n, n, 2 n$
$D_{n d}$	$D_{n d}, C_{n v}, C_{2}, C_{s}, C_{1}$	$1,2,2 n, 2 n, 4 n$
$D_{2 h}$	$\begin{gathered} D_{2 h}, C_{2 v}, C_{2 v}, C_{2 v}, C_{s} \\ C_{s}^{\prime}, C_{s}^{\prime}, C_{1} \end{gathered}$	1, 2, 2, 2, 4, 4, 4, 8
$D_{n h}(n$ odd)	$D_{n h} C_{n v}, C_{2 v}, C_{s}, C_{s}^{\prime}, C_{1}$	$1,2, n, 2 n, 2 n, 4 n$
$D_{n h}$ (n even)	$\begin{gathered} D_{n h}, C_{n u}, C_{2 U}, C_{2 v}, C_{s} \\ C_{s}, C_{s}, C_{1} \end{gathered}$	$1,2, n, n, 2 n, 2 n, 2 n, 4 n$
T	T, C_{3}, C_{2}, C_{1}	1, 4, 6, 12
T_{d}	$T_{d}, C_{3 U}, C_{2 v}, C_{s}, C_{1}$	1, 4, 6, 12, 24
T_{h}	$T_{h}, C_{3}, C_{2 v}, C_{S}, C_{1}$	1, 8, 6, 12, 24
\bigcirc	O, $C_{4}, C_{3}, C_{2}, C_{1}$	$1,6,8,12,24$
O_{h}	$O_{h}, C_{s u}, C_{3 v}, C_{2 v}, C_{s}$	1, 6, 8, 12, 24, 24, 48
I	$I, C_{5}, C_{3}, C_{2}, C_{1}$	1, 12, 20, 30, 60
I_{h}	$I_{h}, C_{3 U}, C_{3 V}, C_{2 U}, C_{S}, C_{1}$	$1,12,20,30,60,120$
C_{∞}	C_{∞}, C_{S}	1, ∞
D_{∞}	$D_{\infty h}, C_{\infty U}, C_{2 v}, C_{s}$	1,2,,∞

Table III. Correlation of $C_{3 v}$ and S_{4} with T_{d}

site symmetry
$C_{3 U}$
symmetry
:---:
interchange
symmetry

different site symmetries are mutually exclusive.
Recasting the framework group in terms of the site symmetry groups amounts to using the site symmetry labels instead of the O, C_{n}, X, etc., labeling used by Pople. The O label is always replaced by the label of the point group, and the X label always by C_{1}. The other labels depend upon which symmetry elements pass through the points. Table II presents Table I of ref 1 in the new notation. The framework notation for a particular molecule can be derived by the obvious substitutions. For example, a tetrahedral XY_{4} molecule would be classified $T_{d}\left[T_{d}(\mathrm{X}), 4 C_{3 v}(\mathrm{Y})\right]$
(the notation $T_{d}\left[T_{d}(\mathrm{X}), \mathrm{C}_{30}(\mathrm{Y})\right]$ is actually sufficient). The notation for $\mathrm{CH}_{2} \mathrm{~F}_{2}$ would be $C_{20}\left[C_{2 v}(\mathrm{C}), C_{s}(\mathrm{H}), C_{s}^{\prime}(\mathrm{F})\right]$. That for the porphine dianion (1) would be $D_{4 h}\left[C_{2 v}(\mathrm{~N}), C_{2 v}{ }^{\prime}(\mathrm{C}(1) \mathrm{H}), C_{5}-\right.$ ($\mathrm{C}(2), \mathrm{C}(3) \mathrm{H})$]. Tables II-V of ref 1 have their original meaning with the obvious substitution of the new definitions.

1
For an illustration of the computational utility of site symmetry and interchange groups, consider the construction of symmetry adapted functions from an s and p basis set on each atom of the tetrahedral XY_{4} system (2). Let the reference Cartesian axes

2
be parallel to the C_{2} axes. Call the basis functions s_{i}, x_{i}, y_{i}, and z_{i}. The orientation of the x_{i} on the Y atoms should be such that they are interchanged by the operations of the interchange symmetry group and similarly for the y_{i} and z_{i}. The site symmetry of X is the full T_{d} and that for Y_{i} is $C_{3 v}$. The respective interchange groups are C_{1} and S_{4}. A correlation diagram ${ }^{4}$ of $C_{3 v}$ and S_{4} with T_{d} is useful. This is given in Table III. This tells us that, for example, a function transforming as the A_{1} representation in the C_{30} site symmetry and as E under the interchange spans the T_{2} representation of T_{d}.

For the X atom, s_{5} transforms as A_{1} within T_{d}, while x_{5}, y_{5}, and z_{5} together transform as T_{2}. For Y_{1}, s_{1} transforms as A_{1}, while x_{1}, y_{1}, and z_{1} span $A_{1}+E$. By using the projection operators, P^{Γ}, from C_{3}, the symmetry adapted combinations of x_{1}, y_{1}, and z_{1} are

$$
\begin{gather*}
P^{A_{1}} x_{1}=(1 / \sqrt{3})\left(x_{1}+y_{1}+z_{1}\right) \equiv a_{1} \tag{1}\\
P^{E} x_{1}=(1 / \sqrt{6})\left(2 x_{1}-y_{1}-z_{1}\right) \equiv e_{1} \tag{2}\\
P^{E} x_{1}=(1 / \sqrt{2})\left(y_{1}-z_{1}\right) \equiv p_{1} \tag{3}
\end{gather*}
$$

(where eq 2 and 3 are the two orthogonal components of the E function.) The symmetry adapted functions in T_{d} can be obtained by applying the appropriate S_{4} projection operators to s_{1}, a_{1}, e_{1}, and p_{1}. We have for the A_{1} functions

$$
\begin{gather*}
P^{A} s_{1}=N\left(s_{1}+s_{2}+s_{3}+s_{4}\right) \equiv \lambda_{1}^{A_{1}} \tag{4}\\
P^{A} a_{1}=N\left(a_{1}+a_{2}+a_{3}+a_{4}\right)=N\left(x_{1}+x_{2}+x_{3}+x_{4}+\right. \\
\left.y_{1}+y_{2}+y_{3}+y_{4}+z_{1}+z_{2}+z_{3}+z_{4}\right) \equiv \lambda_{2}^{A_{1}} \tag{5}
\end{gather*}
$$

where the N 's are normalizing constants. Several combinations are possible for the degenerate E, T_{1}, and T_{2} functions. Unique combinations should be chosen. The combinations EB for E, EE for T_{1}, and $\mathrm{A}_{1} \mathrm{~B}$ and EE for T_{2}, where the first listed representation is from the site symmetry and the second from the interchange,

[^1]are suitable choices. The two components of the E representation of S_{4} acting on the same component of the E from C_{30} give the T_{1} and T_{2} functions. We have for one component of the E functions
\[

$$
\begin{array}{r}
P^{B} e_{1}=N\left(e_{1}-e_{2}+e_{3}-e_{4}\right)=N\left[2\left(x_{1}-x_{2}+x_{3}-x_{4}\right)-\left(y_{1}-\right.\right. \\
\left.\left.y_{2}+y_{3}-y_{4}\right)-\left(z_{1}-z_{2}+z_{3}-z_{4}\right)\right] \equiv \lambda^{E}(6 \tag{6}
\end{array}
$$
\]

For one component of the T_{1} function

$$
\begin{align*}
& P^{E} e_{1}=N\left(e_{1}-e_{3}\right)= \\
& \quad N\left[2\left(x_{1}-x_{3}\right)-\left(y_{1}-y_{3}\right)-\left(z_{1}-z_{3}\right)\right] \equiv \lambda^{T_{1}} \tag{7}
\end{align*}
$$

And for one component of each of the T_{2} functions

$$
\begin{gather*}
P^{\mathrm{B}}{S_{1}}^{=} N\left(s_{1}-s_{2}+s_{3}-s_{4}\right) \equiv \lambda_{1}^{T_{2}} \tag{8}\\
P^{B} a_{1}=N\left(a_{1}-a_{2}+a_{3}-a_{4}\right)=N\left(x_{1}-x_{2}+x_{3}-x_{4}+y_{1}-\right. \\
\left.y_{2}+y_{3}-y_{4}+z_{1}-z_{2}+z_{3}-z_{4}\right) \equiv \lambda_{2}^{T_{2}}(9) \tag{9}\\
P^{E} e_{1} N\left(e_{2}-e_{4}\right)=N\left[2\left(x_{2}-x_{4}\right)-\left(y_{2}-y_{4}\right)-\left(z_{2}-z_{4}\right)\right] \equiv \lambda_{3} T_{2} \tag{10}
\end{gather*}
$$

Radical Anion of 1,1-Difluoroethylene. EPR Evidence for a Perpendicular Geometry

Jih Tzong Wang and Ffrancon Williams*

Department of Chemistry, University of Tennessee Knoxville, Tennessee 37916
Received December 22, 1980
Fluorine substitution is known to have a profound effect on the geometry and electronic structure of alkyl radicals. ${ }^{1-3}$ Also, it has been demonstrated that increasing fluorination of the benzene and pyridine radical anions brings about a $\pi^{*}-\sigma^{*}$ crossover in the electronic structure of these radicals. ${ }^{4,5}$ Since previous work has provided strong evidence that the tetrafluoroethylene radical anion is a σ^{*} radical, ${ }^{6}$ we have sought to generate the 1,1 -difluoroethylene radical anion in the solid state and compare the structures of these two radicals. We find that the EPR spectrum of $\mathrm{CF}_{2}=\mathrm{CH}_{2}{ }^{-}$can be uniquely interpreted in terms of a 90° twisted (perpendicular) molecular geometry, the unpaired electron occupying an orbital which can be designated as σ^{*} (or $\left.\pi^{*}\right)^{7}$ for the CF_{2} group and π for the CH_{2} group.
The lower spectrum (c) in Figure 1 obtained from a γ-irradiated solution of $\mathrm{CF}_{2}=\mathrm{CH}_{2}$ in methylcyclohexane- d_{14} (MCHD) glass shows a pair of broad anisotropic features positioned just inside the lines of atomic hydrogen. Careful studies at 77 K established that these signals were produced to the exclusion of the narrow singlet from the matrix-trapped electron ${ }^{8}$ for 1,1-difluoroethylene solutions in both MCHD and 2-methyltetrahydrofuran ${ }^{9}$ glasses, thereby proving that these outer features result from electron capture by the solute. Thus, the features are assigned to the outer lines of a triplet spectrum resulting from hyperfine interaction with the two fluorines ${ }^{10}$ in $\mathrm{CF}_{2}=\mathrm{CH}_{2}^{-}$, the center line being
(1) Fessenden, R. W.; Schuler, R. H. J. Chem. Phys. 1965, 43, 2704.
(2) Chen, K. S.; Krusic, P. J.; Meakin, P.; Kochi, J. K. J. Phys. Chem. 1974, 78, 2014.
(3) Kispert, L. D. ACS Symp. Ser. 1978, No. 66, 349.
(4) Yim, M. B.; Wood, D. E. J. Am. Chem. Soc. 1976, 98, 2053.
(5) Yim, M. B.; DiGregorio, S.; Wood, D. E. J. Am. Chem. Soc. 1977, 99, 4260.
(6) McNeil, R. I.; Shiotani, M.; Williams, F.; Yim, M. B. Chem. Phys. Lett. 1977, 51, 433.
(7) Jorgensen, W. L.; Salem, L. "The Organic Chemist's Book of Orbitals"; Academic Press: New York, 1973; p 13.
(8) (a) Lin, J.; Tsuji, K.; Williams, F. J. Am. Chem. Soc. 1968, 90, 2766.
(b) Tsuji, K., Williams, F. J. Phys. Chem. 1968, 72, 3884.
(9) McNeil, R. I.; Ph.D. thesis, University of Tennessee, 1978.

[^0]: (1) J. A. Pople, J. Am. Chem. Soc., 102, 4615 (1980).
 (2) (a) R. L. Flurry, Jr., Int. J. Quantum Chem., S6, 455 (1972); (b) Theoret. Chim. Acta, 31, 221 (1973); (c) J. Chem. Ed., 53, 554 (1976); (d) "Symmetry Groups: Theory and Chemical Applications", Prentice-Hall, Englewood Cliffs, NJ, 1980.
 (3) Reference 2d, p 218.

[^1]: (4) E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, "Molecular Vibrations", McGraw-Hill, New York, 1955, p 122.

